Ghi nhớ bài học |

Khái niệm hàm số

I. Định nghĩa

1. Cho D là tập hợp con của tập số thực. Hàm số f xác định trên D là một quy tắc cho tương ứng mỗi x ∈ D một số thực y duy nhất, kí hiệu y=f(x) được gọi là biến số của hàm số f. Số f(x) gọi là giá trị của hàm số f tại x. Ta cũng thường nói y=f(x) là một hàm số xác định trên D.
2 Nếu y=f(x) là một hàm số và f(x)là một biểu thức, thì tập xác định của hàm số là tập các số thực x để biểu thức f(x) có nghĩa.

II. Đồ thị hàm số

 Đồ thị của hàm số y=f(x) xác định trên tập D là tập hợp tất cả các điểm M(x;f(x)) trên mặt phẳng tọa độ với mọi x\in D.

III. Tính đơn điệu của hàm số

1. Định nghĩa:

+ Hàm số y=f(x) gọi là đồng biến (hay tăng) trên khoảng (a ; b) nếu:
                  \forall {{x}_{1}},{{x}_{2}}\in (a;b):{{x}_{1}}<{{x}_{2}}=>f({{x}_{1}})<f({{x}_{2}})
+ Hàm số y=f(x) gọi là nghịch biến (hay giảm) trên khoảng (a ; b ) nếu:
                  \forall {{x}_{1}},{{x}_{2}}\in (a;b):{{x}_{1}}<{{x}_{2}}=>f({{x}_{1}})>f({{x}_{2}})

2. Cách xác định:

• y=f(x) đồng biến trên (a ; b) <=>\forall {{x}_{1}},{{x}_{2}}\in (a;b),{{x}_{1}}\ne {{x}_{2}}

                      

• y = f(x) nghịch biến trên (a ; b) <=>\forall {{x}_{1}},{{x}_{2}}\in (a;b),{{x}_{1}}\ne {{x}_{2}}

                      

3. Chiều biến thiên của hàm số

Xét chiều biến thiên của một hàm số f là tìm các khoảng đồng biến và các khoảng nghịch biến trên tập xác định của nó. Kết quả khảo sát được viết trong bảng biến thiên.

IV. Tính chẵn, lẻ của hàm số

+ Hàm số y=f(x) với tập xác định D gọi là hàm số chẵn nếu với mọi x ∈ D thì -x\in D và f(-x)=f(x).
+ Hàm số y=f(x)với tập xác định D gọi là hàm số lẻ nếu với mọi x ∈ D thì -x\in D và f(-x)=-f(x).
Chú ý:

+ Đồ thị của một hàm số chẵn nhận trục tung làm trục đối xứng.
+ Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

Thống kê thành viên
Tổng thành viên 17.774
Thành viên mới nhất HUYENLYS
Thành viên VIP mới nhất dungnt1980VIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về tpedu.vn


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại tpedu.vn là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • T&P Edu có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên tpedu.vn mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.

webhero.vn thietkewebbds.vn