(New) Đề thi thử số 8 - Năm 2018 - Toán học
Thi thử đại học
Môn thi toán học
(New) Đề thi thử số 8 - Năm 2018 - Toán học
Số câu hỏi: 50
Thời gian làm bài: 90 phút
Yêu cầu nhiệm vụ: 10/50
Yêu cầu nhiệm vụ VIP: 5/50
Điểm ôn luyện lần trước
Chưa có kết quả
Lưu ý: Với mỗi đề thi thử bạn chỉ được cộng điểm thành tích 1 lần duy nhất.
Công thức tính điểm thành tích:
Tỉ lệ % = (số đáp án đúng / tổng số câu hỏi) * 100.
Điểm thành tích:
* Với bài làm có tỉ lệ đúng > 80% : +15 điểm
* Với bài làm có tỉ lệ đúng >= 70% và <= 80% : +10 điểm
* Với bài làm có tỉ lệ đúng >= 60% : +7 điểm
Thành viên VIP được +3 cho điểm thành tích đạt được
Thành viên đã làm bài (0)
Chưa có thành viên làm bài. Bạn hãy là người đầu tiên.
Cho hàm số . Khi đó tiệm cận đứng và tiệm cân ngang là Cho hàm số  có bảng biến thiên như hình dưới đây. Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?   Hai đường cong  Điều kiện của tham số m để hàm số  có khoảng cách giữa các điểm cực đại, cực tiểu là nhỏ nhất khi? Nguyên hàm bằng Kết quả của ∫xdx là:  bằng:  Tích phân  bằng Tích phân  bằng Tích phân  bằng Cho hai biểu thức  Tích I.K bằng Giá trị của biểu thức log9(9 + 4) + log9(9 - 4) + log981 bằng: Tập nghiệm của bất phương trình log0,3(4x2) ≥ log0,3(12x - 5) là : Cho số phức z = 6 + 7i. Số phức liên hợp của z có điểm biểu diễn là   Môđun của số phức z = (1 – 2i) (2 + i)2 là: Trong mặt phẳng phức Oxy, cho tam giác đều ABC có gốc O là trọng tâm và đỉnh A nằm trên trục tung với yA = . Các số phức được biểu diễn bởi các đỉnh của tam giác đều nói trên là Cho lăng trụ đứng có đáy là tam giác ABC vuông cân tại B,  tạo với một góc . Thể tích của khối lăng trụ  là  Cho khối chóp S.ABC có cạnh đáy AB = AC = 5a, BC = 6a và các mặt bện tạo với đáy một góc . Hãy tính thể tích V của khối chóp đó?  Cho hình chóp tam giác đều S.ABC có cạnh AB bằng a. Các cạnh bên SA, SB, SC tạo với đáy một góc  Gọi D là giao điểm của SA với mặt phẳng qua BC và vuông góc với SA. Thể tích khối chóp S.DBC là? Mặt cầu có thể tích là  thì bán kính của mặt cầu là Cho đường thẳng Δ cố định trên đó có hai điểm A và B phân biệt. Gọi (CM) là đường tròn qua điểm M nhận Δ làm trục của nó. Nếu A và B cố định với AB = 2a (a là độ dài cho sẵn) và MA2 + MB2 = 3a2 thì tập hợp những đường tròn (CM) là: Cho hình trụ (T) có hai đáy là hai đường tròn (O) và (O'), tâm O và O', có cùng bán kính r = 2. Gọi I là điểm thuộc đoạn thẳng OO’ ; N1, N2 lần lượt là hình nón đỉnh I , đáy là (O) và (O') . Đặt  và OO' = 5.  Tính k để cho diện tích xung quanh của N1 bằng hai lần diện tích xung quanh của N2. Trong không gian với hệ trục Oxyz, cho (P) : 2x + y + 2z – 4 = 0. Điểm thuộc (P) là Trong không gian Oxyz, giá trị của m thì phương trình  là phương trình mặt cầu: Mặt phẳng (α) qua A(2 ; 3 ; -2) và vuông góc với hai mặt phẳng (P) : 2x - y - 3z - 4 = 0 và (Q) : x + 3y - 2z - 5 = 0 có phương trình là Trong không gian hệ tọa độ Oxyz, phương mặt cầu  .Tọa độ tâm và bán kính của mặt cầu đó: Phương trình  chỉ có các nghiệm là Phương trình  có các nghiệm là Tìm  để phương trình  có nghiệm . Trong một lớp học có 54 học sinh trong đó có 22 nam và 32 nữ. Cho rằng ai cũng có thể tham gia làm ban cán sự lớp. Chọn ngẫu nhiên 4 người để làm ban cán sự lớp; 1 là lớp Trưởng, 1 là lớp Phó học tập, 1 là Bí thư chi đoàn, 1 là lớp Phó lao động. Tính xác suất để ban cán sự có hai nam và hai nữ  Số 80041500 có bao nhiêu ước số tự nhiên? Nghiệm (x;y) thỏa mãn hệ phương trình sau A5xy-3:A5xy-2=17C5xy-2:C5xy-4=143là Ba số a, b, c (a < b < c) theo thứ tự lập thành một cấp số nhân; biết tổng của chúng là 63 và tích của chúng là 1728. Công bội của câp số nhân này bằng Tổng của một cấp số nhân lùi vô hạn bằng , tổng của ba số hạng đầu tiên của cấp số nhân bằng . Số hạng đầu  của cấp số nhân đó là Với y=cosπ4-2x thì y'π8y'π3 có giá trị là A(−3;7). Điểm A’ đối xứng với A qua trục tung có tọa độ Cho tứ diện ABCD. Gọi M, N là trung điểm BC, BD; P là điểm bất kì thuộc cạnh AB. (P không trùng với A, B). Giao điểm của AN và DP là I; giao điểm của AM và CP là J. Vị trí của bốn điểm M, N, I, J là Hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a và có góc BAD^=60o. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và SO=3a4.  Khoảng cách từ O đến mặt phẳng (SBC) là Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB=a, BC=b, CD=c. Độ dài AD=a2+b2+c2. Chỉ ra điểm cách đều A, B, C, D. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AA'=a, AC=2a. Khoảng cách giữa hai đường thẳng AC' và CD' bằng Đường cong trong hình vẽ dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A,B,C,D dưới đây. Hỏi hàm số đó là hàm số nào?                                      Giả sử đường thẳng  cắt đồ thị hàm số  tại một điểm duy nhất, biết khoảng cách từ điểm đó đến tiệm cận đứng của đồ thị hàm số bằng 1; ký hiệu  là tọa độ của điểm đó. Tim  Tìm tất cả các giá trị thực của tham số m để hàm số  nghịch biến trên khoảng   bằng: Kết quả phép tính 253. 52 bằng Mệnh đề sai là Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính AB với A(3; 2; -1), B(1; -4; 1). Trong các khẳng định sau, khẳng định nào sai Đường thằng nào sau đây là tiệm cận ngang của đồ thị hàm số  Phương trình mặt cầu tâm I(3 ; -1 ; 2), bán kính R = 4 là: Điểm nằm trên mặt phẳng (Oxy) cách đều hai mặt phẳng (Oyz) và (Oxz) là
Thống kê thành viên
Tổng thành viên 17.774
Thành viên mới nhất HUYENLYS
Thành viên VIP mới nhất dungnt1980VIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về tpedu.vn


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại tpedu.vn là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • T&P Edu có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên tpedu.vn mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.

webhero.vn thietkewebbds.vn