Đề thi thử số 1 - Năm 2018 - Toán học
Thi thử đại học
Môn thi toán học
Đề thi thử số 1 - Năm 2018 - Toán học
Số câu hỏi: 50
Thời gian làm bài: 90 phút
Yêu cầu nhiệm vụ: 10/50
Yêu cầu nhiệm vụ VIP: 5/50
Điểm ôn luyện lần trước
Chưa có kết quả
Lưu ý: Với mỗi đề thi thử bạn chỉ được cộng điểm thành tích 1 lần duy nhất.
Công thức tính điểm thành tích:
Tỉ lệ % = (số đáp án đúng / tổng số câu hỏi) * 100.
Điểm thành tích:
* Với bài làm có tỉ lệ đúng > 80% : +15 điểm
* Với bài làm có tỉ lệ đúng >= 70% và <= 80% : +10 điểm
* Với bài làm có tỉ lệ đúng >= 60% : +7 điểm
Thành viên VIP được +3 cho điểm thành tích đạt được
Thành viên đã làm bài (0)
Chưa có thành viên làm bài. Bạn hãy là người đầu tiên.
Trong các đồ thị sau đây, đồ thị của hàm số y = -x4 + 2x2 - 2 là Cho hàm số . Đồ thị hàm số cắt đường thẳng  tại 2 giao điểm khi Các giá trị m để hàm số y = mx4 – x2 + 1 đạt cực đại tại x = 0 là Tìm tất cả các giá trị của m để hàm số  đồng biến trên khoảng   Họ nguyên hàm của hàm số  là:  là một nguyên hàm của hàm số Hàm số nào sau đây không phải là  Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b như hình vẽ bên. Khẳng định nào sau đây đúng? Thể tích vật thể tròn xoay sinh ra khi hình phẳng giới hạn bởi các đường y = , y = -x + 2, y = 0 quay quanh trục Oy, có giá trị là   Tìm tất cả các giá trị thực của tham số k để có  Cho hàm số  có đạo hàm liên tục trên  thỏa mãn , với . Tính . Tập nghiệm của bất phương trình  là  Khẳng định đúng khi nói về hàm số  là Cho hai số thực dương  lớn hơn 1 và biết phương trình  có nghiệm thực. Tìm giá trị nhỏ nhất của biểu thức . Số phức z = 2 – 3i có điểm biểu diễn là   Tập nghiệm của phương trình   là Cho số phức   thoả mãn  và . Tính module số phức  Cho số phức z thoả mãn . Khi đó số thực  có phần ảo bằng: Trong các mệnh đề sau, mệnh đề nào đúng? Số các cạnh của hình đa diện luôn Cho hình chóp  có đáy là tam giác đều cạnh a, hình chiếu vuông góc của S trên mặt phẳng  là trung điểm của BC và  hợp với đáy một góc . Tính thể tích V của khối chóp  Người ta gọt một khối lập phương gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là tâm của các mặt khối lập phương). Biết các cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. SA và mặt phẳng (SAB) lần lượt tạo với đáy các góc bằng . Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng  Xét ba mệnh đề: I. Hình nón có duy nhất một trục đối xứng. II. Hình cầu có nhiều nhất là hai trục đốì xứng. III. Hình trụ có vô số trục đối xứng. Mệnh đề đúng là Một hình chóp tứ giác đều có các cạnh đáy bằng a, cạnh bên bằng 2a. Bán kính mặt cầu ngoại tiếp hình chóp là: Cho hình cầu (S) bán kính R nội tiếp hình trụ (T). Gọi O và O' là tâm hai đáy của (T).  Nếu (S) có thể tích là 36 thì diện tích toàn phần của (T) bằng: Trong không gian với hệ trục Oxyz, trong các mặt phẳng dưới đây, mặt phẳng song song với mặt (Oxy) là Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  Chọn phát biểu sai: Cho M(1;2;3) và N(-1;1;0). Tọa độ điểm I thuộc mặt phẳng (P): x-y-z=0 thỏa mãn IM+IN nhỏ nhất là Cho (P): 2x – y + 2z – 1= 0 và A(1; 3; -2). Hình chiếu của A trên (P) là H(a; b; c). Giá trị của a – b + c là Tìm tập xác định của hàm số . Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước được tính tại thời điểm t (giờ) trong một ngày bởi công thức  . Mực nước của kênh cao nhất khi Trong khai triển , hệ số của số hạng chứa  là Một nhóm đoàn viên thanh niên tình nguyện về sinh hoạt tại một xã nông thôn gồm có 21 đoàn viên nam và 15 đoàn viên nữ. Hỏi có bao nhiêu cách phân chia 3 nhóm về 3 ấp để hoạt động sao cho mỗi ấp có 7 đoàn viên nam và 5 đoàn viên nữ? Trong mặt phẳng cho tập hợp điểm P gồm có n điểm, trong đó không có ba điếm nào thẳng hàng. Số các đoạn thẳng với hai điểm đầu thuộc tập (P) là: Cho một cấp số cộng  có  và tổng của 100 số hạng đầu tiên . Tính giá trị của biểu thức ? Tìm khẳng định đúng trong các khẳng định sau:  I.  liên tục trên đoạn  và  thì phương trình  có nghiệm. II.  không liên tục trên  và  thì phương trình  vô nghiệm. Giới hạn có giá trị bằng: Cho A(1; 2), B(-3; 4). Vecto v→ sao cho Tv→(A)=B  là Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M, N, P là trung điểm AB, AD,SC. Mặt phẳng (MNP) cắt SD tại Q. Tỉ số  bằng Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và BAD^=BAA'^=DAA'^=60o.  Khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A'B'C'D') bằng Trong không gian cho hai hình vuông ABCD và ABC'D' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O'. Góc giữa AB→ và OO'→ bằng Số cực trị của hàm số  là:  Giá trị lớn nhất của hàm số  trên đoạn  là Cho hàm số có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị thực của tham số  đề phương trình  có nhiều nghiệm thực nhất.                                Biết , với  là các số nguyên. Tính . Cho  khẳng định sau đây đúng là Cho hình hộp chữ nhật ABCD.A’B’C’D’ có . Lấy điểm M trên cạnh AD sao cho . Tính thể tích khối chóp M.AB’C Cho , A(0;1;1), C(1;0;4). Phát biểu đúng nhất là Cho hàm số  có bảng biến thiên:   Khẳng định nào sau đây là đúng? Cho hàm số  có đồ thị như hình vẽ sau:      Với giá trị thực nào của  thì đường thẳng  cắt đồ thị đã cho tại hai điểm phân biệt. Hàm số y = -x3 + 3x đạt cực đại tại điểm có hoành độ là
Thống kê thành viên
Tổng thành viên 17.774
Thành viên mới nhất HUYENLYS
Thành viên VIP mới nhất dungnt1980VIP

Mini games


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay




Mọi người nói về tpedu.vn


Đăng ký THÀNH VIÊN VIP để hưởng các ưu đãi tuyệt vời ngay hôm nay
(Xem QUYỀN LỢI VIP tại đây)

  • BẠN NGUYỄN THU ÁNH
  • Học sinh trường THPT Trần Hưng Đạo - Nam Định
  • Em đã từng học ở nhiều trang web học trực tuyến nhưng em thấy học tại tpedu.vn là hiệu quả nhất. Luyện đề thả ga, câu hỏi được phân chia theo từng mức độ nên học rất hiệu quả.
  • BẠN TRẦN BẢO TRÂM
  • Học sinh trường THPT Lê Hồng Phong - Nam Định
  • T&P Edu có nội dung lý thuyết, hình ảnh và hệ thống bài tập phong phú, bám sát nội dung chương trình THPT. Điều đó sẽ giúp được các thầy cô giáo và học sinh có được phương tiện dạy và học thưc sự hữu ích.
  • BẠN NGUYỄN THU HIỀN
  • Học sinh trường THPT Lê Quý Đôn - Hà Nội
  • Em là học sinh lớp 12 với học lực trung bình nhưng nhờ chăm chỉ học trên tpedu.vn mà kiến thức của em được củng cố hơn hẳn. Em rất tự tin với kì thi THPT sắp tới.

webhero.vn thietkewebbds.vn